A Low Power and Small Area Analog Voice Activity Detector Featuring a Time-Domain CNN as a Programmable Feature Extractor and a Sparsity-Aware Computational Scheme in 28nm CMOS

Ka-Fai Un, Assistant Professor 阮家煇 助理教授

State-Key Laboratory of Analog and Mixed-Signal VLSI University of Macau, Macao, China

Outline

Motivation and Prior Arts

Proposed Analog Voice Activity Detector (VAD)

- Time-Domain Convolutional Neural Network (TD-CNN)
- Sparsity-Aware Computation (SAC)
- Sparsified Quantization (SQ)
- Measurement Results

Conclusions

Edge Computing VAD

Speech recognition(SR) for smart assistant, automatic subtitle, etc.

- Always on VAD activates SR when there is human voice
- Edge computation for privacy and reducing system power

Analog Feature Extractor (AFE) + Decision Tree (DT)-based Classifier

DT: inferior to Neural Network (NN)-based classifier AFE: power and area consuming

AFE + BNN Classifier

[M. Yang, et al. ISSCC'18]

X AFE: power and area consuming \square BNN classifier **X** Require high resolution ripple counter \rightarrow High Power

IC Advances in China (ICAC) 2022

Mixer-based AFE + NN Classifier

Mixer-based TI-AFE: ☑ Power ☑ Area 🗵 Latency (512ms) ☑ Incomplete extracted feature

Proposed VAD

Outline

Motivation and Prior Arts

Proposed Analog Voice Activity Detector (VAD)

- System Architecture
- Time-Domain Convolutional Neural Network (TD-CNN)
- Sparsity-Aware Computation
- Sparsified Quantization
- Measurement ResultsConclusions

System Architecture of VAD

Sampling capacitor array as analog memory
Switched capacitor-based TD-CNN as feature extractor

System Architecture of VAD

Binarized features processed by BNN for VAD O/P
Sensitivity threshold control to balance FP and FN

Time Domain-CNN - Overview

Analog voltage is extracted as binary feature maps TD-CNN includes analog memory and convolution

TD-CNN – Sampling Cycle

TD-CNN – Computing Cycle

60 kernels evaluated temporally in the 80th sample

MAC output is 1-bit quantized for further classification

Sparsity-Aware Computation (SAC)

Top-plate sampling MAC unit (N=79)
0-weight is open to avoid charge sharing
Increase signal swing of the MAC operation

Sparsified Quantization (SQ)

Compatible to central limit theorem as kernel size is small (N=79)
Test acc. of 3-bit SAC+SQ is higher than 7-bit binary quantization

Comparator Offset and Noise

VAD more robust to offset and noise with sparsified quantization

Outline

Motivation and Prior Arts

- Proposed Analog Voice Activity Detector (VAD)
- Measurement Results
- Conclusions

Chip Photo + Power/Area Breakdown

Measurement Results

TD-CNN as Feature Extractor of KWS

- KWS (2 keywords) consists TD-CNN and a 2D-CNN
- Features extracted by TD-CNN are concatenated for the classifier
- 2 TD-CNNs in parallel to increase feature size for better accuracy

Comparison – Feature Extractor

Feature Extractor	This Work	ISSCC'19 [4]	ISSCC'18 [2]	ISSCC'15 [3]
Feature Extraction Topology	TD-CNN Feature Extraction	Time-Interleaved- Mixer-based Frequency Ext.	Analog-to-Event Filter Bank	Analog Filter Bank
Programmable Feature Extractor	Yes (TD-CNN + Sparsity SC)	Yes (b-DCT Sequence)	No	No
Channel Number	60 🗸	16-48	16	16
Frequency Range (Hz)	100 to 4k	75 to 4k	100 to 5k	75 to 5k
Feature Type	Binary Adaptive	Digital Frequency	Event-based Frequency	Analog Frequency
Power Consumption (nW)	73* 🗸	60	380	6000
Area (mm ²)	0.055 🗸	0.56	1.6	2.56

* power consumed by the clock buffers for the sampling, charge-sharing buffers and LNA

Comparison – Voice Activity Detector

Voice Activity Detector	This Work		ISSCC'19 [4]	ISSCC'18 [2]	ISSCC'17 [1]	JSSC'21[5]
Classifier	TD-CNN + BNN		Neural Network	BNN	Digital Fixed-Point Deep Neural Network	Analog SNR Decision Rule
Classification Rate (Hz)	100 🗸		2	100	100	31.25
Dataset	TIMIT + NOISEX-	92	LibiSpeech + NOISEX-92	AURORA4 + DEMAND	AURORA2	Custom
Accuracy (SP HR/Non-SP HR)	90.1%/94% @ 10dB SNR		91.5%/90% @ 10dB SNR	84%/85% @ 10 dB SNR	90% @ 7 dB SNR	Not Comparable
Power Consumption (nW)	108		142	1000	22300	760
Energy/classification (nJ)	1.08 🗸		73	10	223	24.32
Chip Area (mm²)	0.8 🗸		17.6**	2.5	2.1	0.14 (Active)
Technology	28 nm CMOS		180 nm CMOS	180 nm CMOS	65 nm CMOS	180 nm CMOS

** Area including an audio compressor and a processor

Outline

Motivation and Prior Arts

- Proposed Analog Voice Activity Detector (VAD)
- Measurement Results
- Conclusions

Conclusion

A 108nW 0.8mm² analog voice activity detector is implemented in 28nm CMOS

TD-CNN as Feature Extractor	Reduce area and power consumption Reduce A/D conversions More reconfigurable
Sparsity-Aware Computation	Increase signal swing of the MAC operation
Sparsified Quantization	Diversify the output to desensitize the output from mismatches and noise

Acknowledgments

Multi-Year Research Grant of University of Macau

Macao Science and Technology Development Fund (FDCT)